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A Review
Anomaly-Based versus Full-Field-Based Weather Analysis and Forecasting

Weihong Qian, Jun Du, and Yang Ai

ABSTRACT: Comparisons between anomaly and full-field methods have been carried out in 
weather analysis and forecasting over the last decade. Evidence from these studies has demon-
strated the superiority of anomaly to full field in the following four aspects: depiction of weather 
systems, anomaly forecasts, diagnostic parameters, and model prediction. To promote the use and 
further discussion of the anomaly approach, this article summarizes those findings. After examining 
many types of weather events, anomaly weather maps show at least five advantages in weather 
system depiction: 1) less vagueness in visually connecting the location of an event with its associ-
ated meteorological conditions, 2) clearer and more complete depictions of vertical structures of 
a disturbance, 3) easier observation of time and spatial evolution of an event and its interaction 
or connection with other weather systems, 4) simplification of conceptual models by unifying dif-
ferent weather systems into one pattern, and 5) extension of model forecast length due to earlier 
detection of predictors. Anomaly verification is also mentioned. The anomaly forecast is useful 
for raising one’s awareness of potential societal impact. Combining the anomaly forecast with an 
ensemble is emphasized, where a societal impact index is discussed. For diagnostic parameters, 
two examples are given: an anomalous convective instability index for convection, and seven 
vorticity and divergence related parameters for heavy rain. Both showed positive contributions 
from the anomalous fields. For model prediction, the anomaly version of the beta-advection model 
consistently outperformed its full-field version in predicting typhoon tracks with clearer physical 
explanation. Application of anomaly global models to seasonal forecasts is also reviewed.
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T	he first weather chart was drawn by German meteorologist H. W. Brandes in 1819  
	using weather reports collected in 1783. The first daily weather map was plotted  
	based on telegraphic reports in the United States in 1849. Using radio technology to 

transmit meteorological information promoted the real-time usability of weather charts 
after World War I. Upper air weather charts were developed after the invention of radiosonde 
technologies in World War II (Grahame 2000). Since then, three-dimensional weather 
systems can be described by using the full fields (or total variables) of geopotential height, 
air temperature, specific humidity and wind (both direction and speed). These full-field-
based maps are referred to “traditional” or “conventional” weather maps (charts) in this 
paper. Numerical weather prediction (NWP) model forecasts are also commonly analyzed 
and displayed in the form of conventional weather maps. However, traditional weather maps 
have limitations. Since the weather disturbance signal is much smaller than the background 
climate, the important detailed information of a weather disturbance is often hidden (too 
weak to show) and overlooked in a conventional weather chart. In contrast, an anomaly field 
(i.e., a departure from climate) is found to be more directly associated with a local weather 
event than a full field (Qian et al. 2016b). This situation is illustrated by Fig. 1, where the 
two “positive” events and one “negative” event are hardly visible in the full field but clearly 
revealed in the anomaly.

To explore the added value (i.e., in addition to the value of convectional weather charts) of 
the anomaly approach in weather analysis and forecasting, an anomaly-based method has 
been systematically compared with the full-field-based method over the last decade. The study 
was motivated by an extremely 
severe freezing rain event that 
happened in southern China 
in January 2008. The question 
to be answered was whether 
this freezing rain could be 
predicted by using any signal 
for the leading 5 days, where 
an anomaly method has been 
employed (Qian and Zhang 
2012). After that, the study 
was greatly expanded into 
many other weather extremes 
including heat waves, cold 
surges, heavy rainfall, convec-
tive storms (tornado and hail), 
tropical cyclones, fire weather, 
and fog as well as air pollu-
tion episodes (haze). The find-
ings have been documented in 
more than 30 journal articles. 
These studies have consistently 

Fig. 1. A schematic diagram of converting a total variable or full field 
(green curve) into an anomaly (red curve) by removing climatic component 
(black dash line) to better reveal hidden anomalous weather episodes, 
where two “positive” and one “negative” anomalous events are shown.
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demonstrated the superiority of the anomaly approach to the full-field approach. Besides 
these studies, anomaly forecasts have also gained forecaster attention in short range weather 
forecasting in the last two decades (Grumm and Hart 2001; Junker et al. 2008, 2009; Graham 
and Grumm 2010; Grumm 2011a,b; Du et al. 2013). To promote the anomaly-based approach, 
this article will summarize and review those findings (primarily from the authors’ past work) 
for the community to discuss further. It will be presented from the following four angles: 
description of weather systems [“Anomaly weather map (charts)” section], anomaly forecasts 
(“Anomaly forecast” section), diagnostic parameters (“Diagnostic parameters” section), and 
model predictions (“Model prediction” section). The anomaly method is described in the 
second section. A summary is given in the fourth section.

Anomaly-based approach
Similar to the monthly mean variable decomposition done by Peixoto and Oort (1992), a 
daily mean total variable can be decomposed into four components: zonally mean symmet-
ric and asymmetric climates as well as zonally mean symmetric and asymmetric anomalies 
(Qian 2012a,b). The poleward propagation of zonally mean symmetric anomalous flow is 
associated with polar oscillations in intraseasonal and interannual scales, while the asym-
metric anomaly is associated with regional oscillations (Qian and Liang 2012). Since both the 
asymmetric climate and symmetric anomaly are negligible for daily synoptic-scale motions, 
they later simply decomposed the daily mean or hourly variable into two parts: climate and 
anomaly for weather analysis and forecasting (same as Fig. 1). Therefore, the words “climate” 
and “anomaly” in this study referred to an hourly time scale rather than monthly or seasonal 
mean used in climate study.

Hourly climatology can be estimated by averaging reanalysis data for a variable υ at time 
t (24 h a day) on calendar date d over M years,

( ) ( )( )φ φ∑ɶ
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υ λ p t υ λ p t M,� (1)

where year y runs from 1 to M (M ≥ 30 years), while λ, ϕ, and p denote longitude, latitude. 
and pressure level, respectively. When M is large enough, the estimated climatology should 
be a static state under thermodynamic equilibrium of the Earth-atmosphere system, which is 
only forced by the solar radiation and surface conditions (Qian 2017). The hourly climatology 
contains the diurnal cycle and the annual cycle. In this study, the ERA-Interim reanalysis 
data (Dee et al. 2011) are used with M = 30 years (1981–2010), which are available four 
times per day at 6-h intervals. Once the climatology is known, an anomaly υ�(d,y)(λ, φ, p, t) can 
be extracted from a total variable υ(d,y)(λ, φ, p, t) by subtracting climatology υ�(d,y)(λ, φ, p, t) 
using Eq. (2):
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Figure 2 gives an illustration of this decomposition for the 300-hPa geopotential height (GPH) 
and temperature at 0000 UTC 28 April 2011. The total variables or full fields are shown in Fig. 2a, 
where there are both zonal waves along latitudes and vortices with circled GPH centers, such 
as a vortex (V1) in northeast China and a vortex (V2) on the west coast of North America. The 
corresponding climatology of GPH and temperature is shown in Fig. 2c, along with the wind 
climatology shown in Fig. 2b. On the climatological fields, there are only waves zonally along 
latitudes with no local vortices. These waves are atmospheric tides which are forced by solar 
radiation and surface characteristics as well as solar and lunar gravitation. Although the cli-
matology might have a small change in the long-term trend (at decadal or longer scales) forced 
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by solar radiation intensity fluctuation and human activity, this small trend change should 
have little impact on anomalous signals related to daily weather disturbances on an anomaly 
weather map. Unlike climatology, the anomaly map (Fig. 2d) shows mainly local vortices (GPH 
and temperature anomalies) but rarely zonal waves. There are many positive and negative 
centers of GPH and temperature anomalies, particularly in extratropical regions. For instance, 
in the central United States there was a cold/low center (C) while in the eastern United States 
there was a warm/high center (W). These anomalies were associated with a severe tornadic 
storm in the southern United States (Qian et al. 2019b; as well as Fig. 14 below). These cold and 
warm centers as well as low (vortex) and high (antivortex) centers reflect not only temperature 
and pressure anomalies but also wind anomalies, because these anomalous systems satisfy 
the geostrophic balance horizontally and the hydrostatic balance vertically (Chen et al. 2017; 
Qian et al. 2016d,e).

It is the anomalous systems (as shown in Fig. 2d) that need to be focused on and predicted 
in daily weather analysis and forecasting, since the climatology (as shown in Figs. 2b,c) is 
fixed and known.

Superiority of anomaly to full-field approach
Anomaly weather map (charts). The term “weather map” in this study is a general one, 
and not only refers to a two-dimensional horizontal chart but any charts (such as vertical 
cross section) of meteorological variables. Five advantages of anomaly weather maps over 
conventional weather maps are demonstrated in this section. First, it is easier or less vague 
to visually connect the location of a weather event with associated meteorological conditions 

Fig. 2. (a) Total height H{d,y}(λ, φ, t) (solid contour, 20 × 10-gpm interval) , and total temperature 
T{d,y}(λ, φ, t) (shading, 4-K interval) ; (b) climatological winds υ�(λ, φ, t) (m s−1); (c) climatological 
height H(λ, φ, t), and climatological temperature T(λ, φ, t); and (d) height anomaly H{d,y}(λ, φ, t) 
(contour, 10 × 10-gpm interval) and temperature anomaly T {d,y}(λ, φ, t) T{d,y}(λ, φ, t) (red–yellow 
shading for positive and blue shading for negative, 1-K interval) at 300 hPa at 0000 UTC 28 Apr 
2011 using the ERA-Interim data. Letters “V1” and V2 indicate a vortex in (a). Letters “W” and “C” 
are warm and cold centers of temperature anomalies in (d).
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on an anomaly map. For example, Fig. 3 compares the horizontal view of conventional and 
anomaly weather maps for a heavy rain case (Qian et al. 2016b). The heavy rainband is, in a 
loose sense, located on the left side of a low-level jet (Fig. 3a) and the right side of a low-level 
geopotential height trough (Fig. 3c) on the full-field map. However, it is, in a more precise 
sense, collocated with a wind convergence zone (Fig. 3b), a geopotential height trough and a 
temperature front (i.e., the boundary between negative and positive temperature anomalies) 
(Fig. 3d) on the anomaly map. In other words, the heavy rainband and the anomaly features 
are better correlated in physical location on the anomaly map. The same is true for other 
weather phenomena.

Fig. 3. (a) Total and (b) anomalous winds (m s−1) at 850 hPa at 0000 UTC 1 Jul 1991. In (a) the heavy 
dashed arrow and heavy dashed line indicate the southwesterly jet stream and wind shear line, 
respectively. In (b) the heavy dashed line indicates the anomalous convergence line. Letters “A” 
and “C” denote the anticyclone and cyclone centers. The straight dashed line is along 114.75°E 
longitude, which will be used for vertical–latitude cross-section plots in Fig. 4. (c) Total and (d) 
anomalous height and temperature at 925 hPa, where the heavy dashed line denotes trough 
height, contour for height (10-gpm interval) and color shading for temperature (1-K interval). 
Red, green, and blue open circles (dots) indicate the stations with rainfall over 50, 25–50, and 
10–25 mm day−1, respectively. Purple contours are the isohyets of 10, 25, and 50 mm day−1 using 
the interpolated gridded precipitation.
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Second, vertical structures of a weather system can be revealed more clearly and com-
pletely on an anomaly map. For example, Fig. 4 compares the vertical view of conventional 
and anomaly weather maps for the same heavy rain case. The heavy rainband is located at 
the lower end of the vertically extended anomalous trough and between the positive and 
negative temperature anomalies (Fig. 4b), while these features are not so strikingly visible 
on the conventional map (Fig. 4a). The anomaly map also reveals that the heavy rain event 
is associated with a well-organized structure that penetrates into the whole atmosphere, 
while the conventional map reveals little information on this deep structure with a mere 
near surface event. Similarly for the U.S. 2012 Hurricane Sandy case (Qian et al. 2016a), the 
entire vertical structures (such as low geopotential height and warm core temperature) of the 
hurricane itself and the surrounding weather systems are vividly seen on the anomaly map 
(Figs. 5b,d), while they are not as visible on the conventional map in both zonal and longi-
tudinal directions (Figs. 5a,c). From Figs. 3–5, we can see that with the climate background 
removed, the anomaly features are directly associated with weather events of interest and 
show great spatial details of the disturbances.

Third, given enhanced disturbance signals, either the time or spatial evolution of an 
event or a series of events is much easier to observe on an anomaly map. Figure 6a shows 
a time sequence of anomalous temperature and geopotential height in Beijing over a winter 
month (December 2016). The eight upper-air abnormally warm periods (causing tempera-
ture inversions near the surface) were clearly observed, which exactly correspond to the 
eight air pollution episodes (Fig. 6b) (Qian and Huang 2019). The abnormality of the warm 
episode is also positively correlated to the severity and duration of the air pollution. How-
ever, these characteristics are not obviously visible in the conventional weather maps (not 
shown). By examining the spatial evolution of consecutive anomaly maps, the involved 
physical processes or interactions with surrounding weather systems can also be clearly 
observed. For example, Fig. 7 vividly shows the extratropical transition process of 2012 
U.S. Hurricane Sandy when the hurricane made landfall and merged with an anomalous 
cold air mass from the northwest. This merging process with the cold cored anomalous low 

Fig. 4. Vertical pressure–latitude cross sections of (a) total and (b) anomalous height and tempera-
ture along 114.75°E longitude at 0000 UTC 1 Jul 1991. Contours are for height and color shading 
for temperature. The heavy dashed line denotes the axis of height anomalies in (b). The location 
of the surface rainband is indicated by the symbol p. The contour interval is 100 × 10 gpm for 
height and 5 K for temperature in (a), while it is 1 × 10 gpm and 1 K in (b).
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was also apparent in anomaly vertical cross-section charts (Qian et al. 2016a). For large-
scale and distant meteorological connections (such as teleconnections), anomaly weather 
maps have obvious advantages over full-field weather maps. On anomaly weather maps 
one can clearly relate an anomalous event in one area to other anomalous weather systems 
in remote areas. For example, Du et al. (2013) showed (in their anomaly weather maps 
Figs. 11 and 12) that the heavy rain event over the Beijing region had a direct connection 
with a tropical cyclone in south China (transporting moisture) and a persistent anomalous 
blocking in northeast Asia (slowing down northeastward moving low pressure systems). 
This blocking system is a part of the slow-moving Rossby wave train in the high latitudes, 
with the alternating positive and negative anomalous height centers clearly visible on the 
anomaly map (their Fig. 12). Even though such distant connections might be deduced by an 
experienced meteorologist, it is qualitative on a conventional weather map. It is, however, 
quantitative for a forecaster to assess how abnormal a field is relative to normal situation 
(climate) on an anomaly map.

Fig. 5. Vertical pressure–longitude cross section of (a) total and (b) anomalous height and tempera-
ture along Hurricane Sandy’s center at 0600 UTC 25 Oct 2012. Contours are for height [200 × 10-gpm 
interval in (a) and 2 × 10-gpm interval in (b)] and color shading for temperature [10- and 1–2-K 
intervals for (a) and (b), respectively]. The location of Sandy is indicated by the symbol p. (c),(d) 
As in (a) and (b), but for the vertical–latitude cross section along the hurricane center.
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Fourth, the anomaly ap-
proach could simplify con-
ceptual models by unifying 
different weather systems 
or even completely opposite 
weather phenomena into 
one category. Thus, differ-
ent weather phenomena 
can be analyzed and pre-
dicted using the same uni-
fied method. For instance, 
on an anomaly weather map 
all kinds of low pressure 
systems (such as a southwest 
vortex, subtropical cyclone 
and tropical cyclone) all 
show as an anomalous low; 
air pollution and fog can be 
viewed as a similar tempera-
ture inversion pattern (the 
former is a dry inversion, 
and the latter is a wet inver-
sion) (Qian and Huang 2019; 
Qian et al. 2019a); and heat 
waves and cold surges can 
be categorized into the same 
temperature-anomaly event 
(Qian et al. 2016e). Figure 8 
is the composite vertical profiles (along longitude and latitude, respectively) of anomalous 
temperature and height from 378 cold surge events (the upper panel) and 164 heat wave events 
(the lower panel). For a cold surge, the typical pattern is “a negative center of height anomaly 
at the upper troposphere, a shallow positive center of height anomaly near the surface, a 
cold air column below the upper low center and a warm column above” (Qian et al. 2016e). 
The height anomalies and temperature anomalies are internally correlated with the hydro-
static balance. For a heat wave, the anomalous pattern is the same but with opposite signs. 
Qian et al. (2016e) showed that these anomalous height centers at the upper troposphere are 
correlated to the surface air temperature anomalies. When the upper-air warm (cold) anomaly 
reaches the ground, a heat wave (cold surge) event happens at the surface. Therefore, we can 
use the negative (positive) anomalous height center [named the maximum height anomaly 
(MHA)] at the upper troposphere to trace a cold surge (heat wave) event at the surface in a 
unified way.

Finally, given the much clearer and amplified disturbance signals on anomaly weather 
maps, one would expect that meaningful warning signals or predictors could possibly be 
seen earlier if NWP model forecasts are displayed in the form of anomaly maps. In other 
words, model forecast length could possibly be extended by using anomaly maps instead of 
traditional maps. For example, as discussed in the last paragraph (Fig. 8), the signal of the 
anomalous height center in the upper troposphere (i.e., MHA) is much stronger than that of 
the surface temperature anomaly. Therefore, the forecasts of heat waves or cold surges can 
be greatly extended if we trace MHA instead of surface temperature anomalies. Our result 
shows that positive or negative MHA centers can be traced, on average, nine days ahead for 

Fig. 6. (a) The vertical pressure–time cross section of height (2 × 10-gpm 
interval) and temperature (1- and 2-K intervals) anomalies at Beijing from 1 to 
31 Dec 2016. (b) The time variation of PM2.5 concentration (μg m−3) at Beijing 
over the same time period. Legend: H = positive height anomaly center; W 
= warm temperature anomaly; and P = peak of PM2.5 concentration. There 
were eight air pollution episodes that occurred.
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surface air temperature anomaly events (heat waves and cold surges) in ECMWF global model 
forecasts. Figure 9 shows three heat wave cases, where the MHA signal indicates a heat wave 
event can be steadily traced 20–26 days back to an upstream region in the ECMWF model 
forecast (Chen et al. 2017; Qian et al. 2016d,e; Qian and Jiang 2014). A similar forecast length 
extension was also seen in the air pollution case by using an anomaly map similar to Fig. 6. 
Such anomalous patterns (“fingerprints”) of major weather events can be detected by using an 
artificial intelligence technique such as pattern recognition to increase the utility of an NWP 
model prediction, as demonstrated by the work of Grumm et al. (2005) and Root et al. (2007).

In addition to the above five advantages, an anomaly map can be used to evaluate forecasts. 
For example, Fig. 10 is the altitude–forecast hour (7.5-day forecast) cross section of a hurricane 
center’s anomalous height and temperature, predicted by two global models (ECMWF and NCEP 
GFS) initialized at 0000 UTC 24 October 2012 for Hurricane Sandy (Qian et al. 2016a). It clearly 
shows the differences in performance between these two models. By comparing to the analyzed 
anomalous fields (Fig. 10c), two major differences are clearly visible: 1) the extratropical transi-
tion (ET) process from 30 to 31 October was correctly captured by the ECMWF model but missed 
by the NCEP GFS, because the GFS failed to predict Sandy’s left-turning landfall when it moved 
northward; and 2) the ECMWF model predicted the hurricane center pressure as too low, while 
the GFS forecast is closer to the analysis. Whether or not the anomaly-based verification method 
has a systematic advantage over the full-field-based verification method needs to be further 

Fig. 7. Time evolution of height anomaly (positive is solid and negative is dashed; 4 × 10-gpm 
interval) and temperature anomaly (shading; 2-K interval) at the 700-hPa level for (a) 0000 UTC 
29 Oct, (b) 1800 UTC 29 Oct, (c) 0000 UTC 30 Oct, and (d) 0000 UTC 31 Oct 2012.
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investigated. Van den Dool (2007) did show that the anomaly correlation better reflects the true 
quality of a forecast than a full-field-based correction in climate study. The anomaly correlation 
is now a standard measure to 
verify an NWP weather forecast 
at NCEP (J. Du 2020, personal 
communication).

Anomaly forecast. In sea-
sonal and short-term climate 
forecasting, qualitative anom-
aly (e.g., above, at or below 
a normal climatic state) is a 
commonly used format due 
to the lack of predictability 
in detailed atmospheric mo-
tions (Van den Dool 2007). 
During the last two decades 

Fig. 8. The 378-day cold-surge case composites of height (40-gpm interval) and temperature (1-K 
interval) anomalies for two vertical cross sections along (a) 50°N latitude and (b) 112.5°E longitude. 
The 164-day heat-wave case composites of height and temperature anomalies for two vertical 
cross sections along (c) 40°N latitude and (d) 112.5°E longitude.

Fig. 9. Daily points of maximum height-anomaly (MHA) centers during 
the two months of August and September in 1999. Three colored lines 
show the tracks of three MHA centers. Dates were also marked for the red 
line, e.g., “8/18” and 8/22” indicate the dates of 18 Aug and 22 Aug 1999.
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a quantitative anomaly forecast has also been introduced to short-range weather forecasts, 
especially for high-impact weather events (Grumm and Hart 2001; Hart and Grumm 2001; 
Junker et al. 2008, 2009; Graham and Grumm 2010; Grumm 2011a,b; Du et al. 2013; Alcott 
et al. 2014; Lamberson et al. 2015). This quan-
titative anomaly forecast (hereafter referred 
to as “anomaly forecast”) has been widely ac-
cepted by the weather forecasting community 
since it is useful in raising a user’s awareness 
of potential societal impact.

Unlike anomaly weather maps where the 
absolute anomaly [Eq. (2)] is used, anomaly 
forecasts use the standardized anomaly [SA; 
Eq. (3)]. This is because climate varies greatly 
with location and time, only SA can truly re-
flect the local significance of a weather forecast 
in terms of how unusual a forecast is relative 
to its climatic variation. The SA is an anomaly 
normalized by the standard deviation of cli-
mate variation:

	�
(3)

where σclim(λ, φ, p, t) is the standard deviation 
of climatic variation of a variable, and the rest 
are the same as in Eq. (2). When υ(d,y)(λ, φ, p, t) is 
a forecast, SA(d,y)(λ, φ, p, t) becomes an anomaly 
forecast. Jiang et al. (2016) has a comparison 
study between the two forms of anomalies: the 
absolute anomaly from Eq. (2) and the normal-
ized anomaly relative to climatic variation from 
Eq. (3).

Initially, the SA was used to assess the rareness 
of an event in history by comparing it with the 
climatological variation (Grumm and Hart 2001; 
Hart and Grumm 2001; Junker et al. 2008, 2009; 
Graham and Grumm 2010; Grumm 2011a,b). 
Later on SA was further combined with en-
semble forecasts to not only assess its rare-
ness but also to estimate the likelihood of its 
occurrence as well as its potential societal 
impact (Du et al. 2013; Alcott et al. 2014; 
Lamberson et al. 2015). Du et al. (2013) will 
be used below as an example to demonstrate 
these three aspects.

Figures 11a–c are the anomaly forecasts (in 
color) derived from the single deterministic GFS 
model outputs, based on Eq. (3) for a heavy rain 
event (Du et al. 2013). We can see that the SA 
of both 850-hPa southerly wind υ (Fig. 11a) 

Fig. 10. Vertical pressure–time cross sections of height 
anomalies (positive in a solid line and negative in a 
dashed line; 2 × 10-gpm interval) and temperature anoma-
lies (shading; 1-K interval) with 6-h interval for (a) ECMWF 
model forecast (0000 UTC 24 Oct–1200 UTC 31 Oct), (b) 
NCEP GFS forecast (0000 UTC 24 Oct–1200 UTC 31 Oct), 
and (c) ERA-Interim analysis (1800 UTC 21 Oct–1200 UTC 
31 Oct 2012). In (c), the heavy dotted line and the heavy 
dashed line are the axes of height anomalies and tem-
perature anomalies, respectively. Three vertical axes 
of height anomalies at the mid–low troposphere are 
indicated by the heavy dotted line at 1800 UTC 24 Oct, 
1800 UTC 27 Oct, and 0000 UTC 30 Oct, respectively.
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and precipitable water (Fig. 11b) exceeded three standard deviations (SD) of climate vari-
ance, and the SA of the 850-hPa horizontal moisture flux (Fig. 11c) was even stronger and 
exceeded six standard deviations, suggesting a potentially very significant heavy rain event 
would occur in its immediate downstream region. This high SA information would certainly 
give forecasters a high confidence about the significance level of the upcoming heavy rain 
as predicted by Fig. 11d.

Although the anomaly forecast derived from a single forecast (as in Fig. 11) can provide 
forecasters information about the significance level of a potential weather event, it does not 
provide quantitative information about the confidence level of the forecast itself (i.e., likeli-
hood of occurrence). If we combine an anomaly forecast together with ensemble forecasts 
(Du et al. 2018), then both the significance level of an upcoming event and the confidence 
level of the forecast can be obtained at the same time. For example, when Eq. (3) was ap-
plied to each member of the GEFS ensemble, a probabilistic forecast of SA exceeding a fixed 
threshold can be calculated. Figure 12 is the probabilistic forecasts (in color) of SA exceeding 
three standard deviations for three variables. The probability of SA exceeding three standard 
deviations is over 80% for the southerly wind υ, and 100% for both precipitable water and 
horizontal moisture flux, suggesting the upcoming event is not only significant but also highly 

Fig. 11. The NCEP 27-km single GFS 48-h forecasts of (a) 850-hPa winds (vectors; m s−1) and southerly wind 
υ anomalies SA (color; 1-SD interval), (b) precipitable water (contours; 5-mm interval) and its anomalies SA 
(color, 1-SD interval), and (c) 850-hPa horizontal moisture flux (contours; 30 × 0.01 g kg−1 × m s−1 interval) 
and its anomalies SA (color; 1-SD interval), initiated at 1200 UTC 19 Jul and valid at 1200 UTC 21 Jul 2012. 
(d) The GFS 60-h forecast of accumulated quantitative precipitation (25-mm interval) for the 24-h period 
of 0000–2400 UTC 21 Jul, initiated at 1200 UTC 19 Jul and valid at 2400 UTC 21 or 0000 UTC 22 Jul 2012. 
The black dot is Beijing.
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likely to occur. Figure 12d shows the 60-h forecasts of ensemble mean and the probability of 
exceeding 50 mm for 24-h accumulated rainfall.

Further, when information like Figs. 11 and 12 is combined together, a societal impact 
matrix can be defined (Du et al. 2013; Suri 2015; Economou et al. 2016; Bevan 2017). How to 
form this matrix? Different people had different ways. The Met Office has done some extensive 
work on this aspect (Suri 2015; Economou et al. 2016; Bevan 2017). The western regional 
office of the National Weather Service (NWS) has been experimenting with it in operations 
too (Alcott et al. 2014; Lamberson et al. 2015). In Du et al. (2013) the significance level (a 
function of SA) is as the x axis, forecast confidence (a function of probability) as the y axis, 
and the multiplication of x and y is the value of matrix elements or the societal impact index 
(SII) (Fig. 13). Apparently, a predicted event with higher SA and higher probability (yielding 
a higher SII) will be both more significant relative to climate and more likely to occur, imply-
ing a higher societal impact. Therefore, SII is an indicator of the situational awareness level 
of a forecast, either giving heads up or down to forecasters and users. How to construct an 
optimal societal impact matrix could be user or situation dependent. In Fig. 13, the x axis uses 

Fig. 12. The NCEP 55-km GEFS 48-h forecasts of (a) 850-hPa ensemble mean winds (vectors; m s−1) and the 
probability (%) that the SA of southerly wind υ exceeds three standard deviations (color), (b) ensemble 
mean precipitable water (contours; mm) and the probability (%) that its SA exceeds three standard de-
viations (color), and (c) 850-hPa ensemble mean moisture flux (contours; 0.01 × g kg−1 × m s−1) and the 
probability (%) that its SA exceeds three standard deviations (color), initiated at 1200 19 Jul and valid at 
1200 21 Jul 2012. (d) The GEFS 60-h forecast of ensemble mean accumulated quantitative precipitation 
(mm) and the probability (%) that the rainfall exceeds 50 mm for the 24-h period of 0000–2400 UTC 21 Jul, 
initiated at 1200 UTC 19 Jul and valid at 2400 UTC 21 or 0000 UTC 22 Jul 2012. The black dot is Beijing.
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2 × SA as the interval, while the 
y axis uses 1/10 of probability 
(in %) as the interval, where 
SA refers to the ensemble mean 
forecast and the probability is 
calculated from all ensemble 
members exceeding this SA 
value. For example, if the SA 
= 4 in the ensemble mean and 
the probability of SA exceeding 
4 is 90%, it gives the SII a value 
of 72, indicating a high impact 
event to society. Since an SII 
can be calculated at each indi-
vidual location or a grid point, 
SII can be displayed either at a 
point or on a two-dimensional 
map for forecaster use. For an 
ensemble prediction system 
and a type of weather event, 
a large number of cases are 
needed to find out the average 
value of SII, so that it will give 
a forecaster or a user a quanti-
tative threshold to distinguish 
between a higher or lower societal impact event. These representative SII values could be 
pre-estimated by using ensemble reforecasting dataset (Hamill et al. 2013). Physical under-
standing of the relationship between an SII value and a real world application is also needed.

Note that SII is calculated from an individual variable, but there may be several variables 
key to a real world event such as heavy rain in this case (e.g., 850-hPa υ, precipitable water, 
and 850-hPa moisture flux, Figs. 11 and 12). Which variable’s SII should be used as the final 
indicator for this heavy rain event? The answer could depend on a forecaster’s scientific insight 
and experience: it could be a single SII of the most significant variable like the 850-hPa mois-
ture flux, or a weighted/unweighted average or a certain combination of the three SIIs from 
all variables. The NWS western regional office has developed a real-time monitoring website 
with a situational awareness table for eight selected variables based on the North American 
Ensemble Forecast System’s global ensembles (https://satable.ncep.noaa.gov/naefs and http://ssd 
.wrh.noaa.gov/satable). These efforts are very helpful to deepen our understanding of this SII 
work and guide us to wisely select meaningful variables. For instance, their table shows a quite 
promising signal: different types of weather events may share similar significant variables.

Diagnostic parameters. Anomaly fields are not only more clear in depicting weather 
disturbances through anomaly weather maps but are also more indicative in construct-
ing diagnostic parameters for a weather event. Two examples will be demonstrated in 
this subsection. Figure 14 shows the vertical distributions of the total (Fig. 14a) versus 
anomalous (Fig. 14b) heights and temperatures along 34°N at 0600 UTC 28 April 2011 for 
a tornadic event. Similar to what we have already seen above, the vertical structure is much 
more striking in the anomaly field than the full field. Convective instability indices derived 
from the total temperature and anomalous temperature are shown in Figs. 14c and 14d, re-
spectively. Figure 14c is the traditional lifted index (LI) which is defined as the temperature 

Fig. 13. “Societal impact matrix” of a weather forecast: the horizontal 
axis indicates the anomalous (significant) level of a predicted weather 
event, the vertical axis the confidence level of the forecast. A higher 
matrix-element value [defined as “societal impact index” (SII)] indicates 
higher societal impact potentially caused by the predicted weather event.
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difference between the 500- and 850-hPa levels. Figure 14d is the anomalous convective 
instability (ACI) index, which is defined in Qian et al. (2019b) as the difference of vertically 
integrated temperature anomalies T� between two opposite anomalous air masses from 
1,000 to 100 hPa [Eq. (4)]:

lower-layer upper-layer

ACI= ΄ – ΄
   
      ∫ ∫T dp T dp .� (4)

The boundary of the two opposite anomalous air masses [marked as “upper-layer” and 
“lower-layer” in Eq. (4)] is defined by the zero temperature anomaly (Fig. 14b). For the lifted 
index, the tornado event is associated with one of many LI peaks (Fig. 14c). For the anoma-
lous convective instability, the tornado occurred near the sole zero line of ACI on the positive 
side (Fig. 14d). The signal of ACI is much more distinct than that of LI because the difference 
between the positive and negative values in the ACI is vastly larger and steadier due to the 
integration of anomalous information from the entire atmosphere. The ACI is also capable of 
distinguishing the severity of convective storms. For example, the value of ACI for 15 tornadic 

Fig. 14. Vertical pressure–latitude cross sections of (a) total height (contours; 200 × 10-gpm interval) 
and temperature (shading; 15-K interval), and (b) anomaly height (contours; 2 × 10- gpm interval) 
and temperature (color; 3-K interval) along 34°N at 0600 UTC 28 Apr 2011. (c) The traditional lifted 
index (LI) and (d) the anomalous convective instability (ACI) index. The triangle “p” indicates 
the central position of the surface anomalous low associated with the tornadic storm. The green 
solid and dashed lines, respectively, indicate anomalous sinking and rising pressure velocities 
(0.2 Pa s−1 interval). The red-dotted line vertically separates the anomalous warm air mass from 
the anomalous cold air mass in (b). Heavy rainfall and tornedoes occurred near the triangle on 
the anomalously warm and rising flow side.
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storms is, on average, 1.5 times larger than that for 20 hailstorms (Qian et al. 2019b). Their 
results showed that the ACI index also outperformed other full-field-based indices, includ-
ing convective available potential energy (CAPE), updraft helicity (UH), and severe weather 
threat (SWEAT) in detecting tornadic and hailstorms.

Qian et al. (2015) systematically compared the full-field version with various anomaly 
field versions of seven parameters for diagnosing heavy rain areas. The seven parameters are 
vorticity (Vort), divergence (Div), moist vorticity [MV; Eq. (5)], moist divergence [MD; Eq. (6)], 
specific humidity (Q or q), Q vorticity [VQ; Eq. (7)], and Q divergence [DQ; Eq. (8)] for diagnos-
ing heavy rain areas (Qian et al. 2015, 2016c):

10

MV= × ,
  ∂ ∂   −     ∂ ∂   s

υ u q

x y q
� (5)

10

MD= + × ,
  ∂ ∂        ∂ ∂   s

u υ q

x y q
� (6)

VQ= – × ,
 ∂ ∂    ∂ ∂ 
υ u

q
x y

� (7)

DQ= + × ,
 ∂ ∂    ∂ ∂ 
u υ

q
x y

� (8)

where q/qs is the ratio of specific humidity to saturated specific humidity (i.e., relative 
humidity). After evaluating 41 heavy rain cases occurring in 1998, their results showed that 
except for divergence and MD, the 
anomaly-based version outperformed 
the corresponding full-field-based 
version for the other five parameters 
(Fig. 15). The results also showed that 
for multivariable parameters, a hybrid 
version (i.e., anomaly for one variable 
and full field for another) often per-
formed better than a pure-anomaly 
version (i.e., anomaly for all variables).

Model prediction. The anomaly ap-
proach has also been applied to the 
prediction model itself. For example, 
NOAA/GFDL and Princeton University 
have experimented with an anomaly 
GCM for long-range weather forecasts 
(Miyakoda and Chao 1982). They ar-
gued that “there may be a limitation 
on the pure GCM forecasts for the 
seasonal range. An anomaly model 
may provide a remedy as the accurate 
and economical forecasting method.” 
Guo and Chao (1984) further developed 
this anomaly model into a filtered 

Fig. 15. Average threat scores (TSs) of the seven parameters 
(Vort = vorticity; Div = divergence; MV = moist vorticity; MD = 
moist divergence; Q = specific humidity; VQ = vorticity × specific 
humidity; and DQ = divergence × specific humidity) in depicting 
heavy precipitation area (≥25 mm day−1) based on a total of 41 
daily heavy rain cases that occurred in eastern China during 
1998. Legend for different versions: TT = all total field(s); AA = 
all anomalous field(s); TA = total wind field × anomalous moisture 
field; and AT = anomalous wind field × total moisture field.
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anomaly model or anomalous filtered model (AFM), in which transient Rossby waves are 
filtered. Chao et al. (1986) applied a version of the three-layer AFM to monthly predictions of 
eight winter months during the 1976/77 and 1982/83 El Niño periods. They showed that the 
AFM can successfully predict the large-scale patterns of the monthly mean surface tempera-
ture anomalies and outperformed persistence forecasts.

Since a state of the art NWP model is highly nonlinear, complex and interactive at all scales 
and physics, it is extremely challenging, if not impossible, to decompose it into climate and 
anomaly components. Therefore, a simple dynamical model is used in Qian et al. (2014) 
and Huang et al. (2015) to build an anomaly model for short-range forecasts of typhoon or 
hurricane track, which is used as a demonstration below. The barotropic vorticity equation 
thought to approximately govern the horizontal flow is written as follows:

=– – + ,u
∂ ∂ ∂−
∂ ∂ ∂
ζ ζ ζ

υ βυ F
t x y

� (9)

where ζ = (¶υ/¶x) − (¶u/¶y), β = (df/dy) = 2Wcos(φ/a), f = 2Wsinφ, and W = 7.292 × 10−5 rad s−1 
is the angular speed of Earth’s rotation. The terms a and φ are the mean radius of Earth and 
geographical latitude, respectively. The variable F is a generic forcing term that includes forces 
at all scales and dissipation such as divergence, friction, and diabatic processes. For nondiver-
gent, frictionless and adiabatic atmospheric motion, F = 0. Equation (9) can be simplified as

=– – – .
∂ ∂ ∂
∂ ∂ ∂
ζ ζ ζ

u υ βυ
t x y

� (10)

Equation (10) indicates that the movement of a vortex such as a tropical cyclone is primarily 
controlled by the advection of relative vorticity and the Earth rotation beta effect. This is the 
classical total-flow-based two-dimensional beta-advection model (BAM). Depending on the 
steering flow layer used, there are three versions of BAM: BAM-Shallow (BAMS) applied to 
the 850–700-hPa layer, the BAM-Medium (BAMM) applied to the 850–400-hPa layer, and 
the BAM-Deep (BAMD) applied to the 
850–200-hPa layer.

If the total flow is decomposed into 
climatic and anomalous flows [Eq. 
(2)], the BAM can be simplified into 
a so-called generalized beta-advec-
tion model (GBAM) (Qian et al. 2014; 
Huang et al. 2015):

	 ΄ ΄ ΄
=– ΄–

y

∂ ∂ ∂−
∂ ∂ ∂
ζ ζ ζ

u υ βυ .
t x

	 (11)

The GBAM indicates that the vortex 
itself and beta effect can be described 
by anomaly flow alone but the steering 
flow needs to consider both climate 
and anomaly [−u�(¶ς�/¶x) − υ�(¶ς�/¶y), 
−υ�(¶ς�/¶x) −  υ�(¶ς�/¶y)]. Since the cli-
matic flow is known, the prediction of 
a vortex can then be made based purely 
on anomalous flow.

Huang et al. (2015) systemati-
cally compared the performances 
of the total-f low-based BAM and 

Fig. 16. The 48-h track forecasts of Typhoon Aere, initiated at 
0600 UTC 23 Aug 2004 (24 h before the left turning), by six 
models—GBAM (blue solid dots) and the three versions of BAM: 
BAMS (pink open circles), BAMM (dark green asterisks), and 
BAMD (purple triangles), as well as CBAM (orange pluses) and 
ABAM (light green squares). The hurricane symbol indicates the 
best track.
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anomalous-flow-based GBAM in predicting typhoon tracks (1–2 days in advance) using 133 
tropical cyclones (TCs) occurring in the eastern China seas in 1979–2011. They found that the 
GBAM steadily outperformed the BAMs for both normal and unusual tracks. One example is 
given in Fig. 16, where the GBAM track successfully predicted the left turn of Typhoon Aere before 
it approached the mainland to make its landfall, while all three BAM versions (BAMS, BAMM, 
and BAMD) failed to predict this critical left turn but kept the track straight. This is true for the 
other TCs, in which the GBAM was particularly good in predicting unusual TC tracks but the 
BAM had no ability to predict left-turning and right-turning TC tracks. The stated reason for the 
superiority of GBAM to BAM lies in two factors: 1) The GBAM focuses on the main factors (e.g., 
separating the vortex from the steering flow) and 2) The steering flow level for the GBAM can 
be precisely estimated from anomalous vorticity or divergence at model initialization time. This 
is the level with the maximum vorticity anomaly (Max-VA) and minimum divergence anomaly 
(Min-DA). By the way, since the Max-VA or Min-DA level varies with the intensity of a TC, this 
pre-estimate of steering flow level at the model initialization time prevents the GBAM from ex-
tending its forecast length beyond 1–3 days, especially for rapid intensifying or decaying TCs.

Besides the better performance of the anomaly-based over the total-flow-based model, the 
anomaly-based model has another advantage in understanding physical processes, because 
it can easily isolate different components. For example, Huang et al. (2015) demonstrated 
that the GBAM can be used to understand unusual TC tracks by separating it into two forms: 
a climatic-flow BAM (CBAM),

΄ ΄ ΄
=– – – ,́

∂ ∂ ∂
∂ ∂ ∂

ɶɶζ ζ ζ
u υ βυ

t x y
� (12)

and an anomalous-flow BAM (ABAM),

΄ ΄ ΄
=– ΄ ΄ – .́

y

∂ ∂ ∂−
∂ ∂ ∂
ζ ζ ζ

u υ βυ
t x

� (13)

The CBAM can test the steering impact of climatic flow, while the ABAM can test the anomaly 
flow impact. They found that neither the climatic or anomalous flow alone as the steering flow 
can explain unusual tracks (e.g., both CBAM and ABAM yielded unrealistic tracks compared 
to the best track, Fig. 16). The GBAM can easily be used to test the interaction of a TC with 
surrounding vortices. For example, by removing the surrounding anomaly vortex, their sen-
sitivity experiments showed that two anomalous highs as well as a nearby TC played major 
roles in the unusual left turn of Typhoon Aere (2004).

Caveats of the anomaly approach. Anomaly maps and forecasts [“Anomaly weather map 
(charts)” and “Anomaly forecast” sections] are apparently more useful for more significant 
and larger-scale events that tend to affect large population centers. Due to the limitation in 
spatial and temporal resolution of available data, especially climatology, sometimes local 
and mesoscale weather can fall through the cracks in an anomaly-based system. An example 
(provided by one of the anonymous reviewers) is that dry air with light winds could cause 
local radiational cooling which could produce frost and damage crops. These conditions in the 
transition seasons could produce fog and stop aircraft. They tend to be very local or regional 
in scale and could possibly be missed by anomaly-based tools.

For the following two reasons, anomaly maps should not be used alone but together with 
full field maps. The first reason is regarding appearance. As discussed in Qian et al. (2016b), 
the physical interpretation of an anomaly weather map [“Anomaly weather map (charts)” 
section] needs to be done with caution because an anomaly field is only relative to climate 
and cannot show the full picture. For example, a high pressure system could appear as an 
anomalous low pressure system in an anomaly weather map if the total field is below the 
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climatic value. Similarly for wind, an anomalous southerly wind does not necessarily repre-
sent a true southerly wind in a full field weather map. At the same time, an anomaly map can 
help us to formulate a scientific question differently. One might ask “Why is there a high pres-
sure system over there?” when looking at a full-field weather map, while the question could 
become “Why has a normally strong high pressure system become weaker?” when looking at 
an anomaly map. The second reason is regarding development. The development and evolu-
tion of an atmospheric system depends on actual weather systems. One cannot infer physical 
development based solely on anomaly fields without referencing to a full-field weather system. 
For example, two anomalous lows may look similar in anomaly maps but could be associated 
with very different weather systems, such as a midlatitude cyclone versus a tropical cyclone. 
On the other hand, an anomalous system will provide more insightful details about structure. 
Therefore, the anomaly method cannot replace the full-field method but serves as a good 
supplement. By referencing full-field and anomaly weather maps together, one will have a 
fuller picture of an event and a deeper understanding of the underlying physical processes.

From the examples shown in the “Model prediction” section, we can see that the benefit 
of an anomaly-based model stems mainly from its simplification. Simplification enables a 
model to focus on main causes and identify the main controlling factors of a weather system 
and produce a more accurate forecast (e.g., the GBAM example). Simplification amplifies 
forecast signals and increases the predictability of a predictand. Simplification also makes 
a model more affordable in computing resources but still with reasonable accuracy (e.g., 
the anomaly GCM example). On the other hand, simplification means incompleteness for a 
model, which will surely result in errors. The technical difficulty in decomposing a complex 
dynamic model is another barrier to using anomaly model. For a state of the art NWP model 
with full physics, it is almost impossible or extremely difficult to decompose it into climate 
and anomaly components. Partial decomposition within a model may be possible to simplify 
nonlinear processes and focus on the main causes to improve a forecast. Finally, due to the 
reduction of complexity and nonlinearity, a simplified anomaly model will be less sensitive 
to changes in initial conditions and model physics. Therefore, it might not be able to produce 
rare solutions with low probability. Therefore, an anomaly model might not be suitable for an 
ensemble prediction whose aim is to capture a full spectrum of all possibilities. More research 
is apparently needed in the study of the anomaly model.

Summary
To explore whether there is a better approach than the traditional synoptic analysis for weather 
analysis and forecasting, an anomaly-based method has been systematically compared with 
the full-field-based method for the last decade. The findings have been individually published 
in more than 30 journal articles. Evidence from these studies has demonstrated the superior-
ity of the anomaly approach over a full-field approach in the following four general aspects: 
depiction of weather systems using anomaly weather maps, anomaly forecasts, diagnostic 
parameters and model prediction. To promote the use and further discussion of the anomaly 
approach, this article has reviewed those findings.

For weather system depiction, anomaly weather maps have been applied to all kinds of 
weather extremes including heat waves, cold surges, heavy rainfall, freezing rain, fog, con-
vection, tropical cyclones, and fire weather as well as air pollution. It is found that anomaly 
weather maps have at least five advantages compared to full-field weather maps: 1) less 
vagueness in visually connecting the location of a weather event with the associated meteo-
rological conditions, 2) clearer and more complete depictions of the vertical structures of a 
weather system, 3) easier observation of the time and spatial evolution of a weather event as 
well as its interaction and connection with other weather systems far and near, 4) simplifica-
tion of conceptual models by unifying different weather systems or even completely opposite 
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weather phenomena into one pattern, and 5) extension of model forecast length due to ear-
lier detection of signals or predictors. Anomaly weather maps can also be used to compare 
different models’ performance as a verification tool. Whether anomaly-based verification is 
systematically better than full-field-based verification needs to be studied.

The anomaly forecast has been proposed and widely accepted by the weather forecasting 
community over the last two decades. Comparing a forecast to local climatology can provide 
unique information about the significance level of an upcoming event. By further combining 
anomaly forecast with ensemble forecasts, an anomaly forecast can provide not only the sig-
nificance level of an upcoming event but also the confidence level of the forecast itself. With 
both the event significance and forecast confidence information, an SII can be calculated 
through a societal impact matrix. The SII is an indicator of situational awareness level to 
raise a user’s awareness of potential societal impact. Establishing the meaning and physical 
understanding of an SII value needs a large number of cases, where ensemble reforecasting 
dataset has a great potential to contribute.

For diagnostic parameters, two examples are given: an anomalous convective instability 
index for convective storms, and seven vorticity- and divergence-related parameters for heavy 
rain areal coverage. They generally performed better when a full field was replaced by an 
anomalous field. This result also showed that for multivariable parameters, a hybrid version 
(i.e., anomaly for one variable and full field for another) often performed better than a pure-
anomaly version (i.e., anomaly for all variables).

For model prediction, the anomaly version of a beta-advection model with no physics 
was used as a demonstration. It consistently outperformed its full-field version in predicting 
tropical cyclone tracks, especially unusual tracks. This success is believed to be attributable 
to two reasons: 1) the anomaly model focuses on the main causes rather than secondary 
causes, and 2) the steering flow level can be exactly determined in the anomaly model. An 
anomaly model also makes it easier to test different roles played by surrounding disturbances 
and the climatic environment in determining a tropical cyclone’s track. Similar to the diag-
nostic parameter study, the beta-advection model study also showed that a hybrid version 
performed better than a pure-anomaly version. When the full field was used for the steering 
flow and the anomaly flow was used for the vorticity and beta effect, it produced the best 
track forecasts. In addition, a historical work related to anomaly GCM models for long-range 
weather forecasts has also been reviewed.

Advantages and disadvantages always come in pairs. Three caveats with the anomaly ap-
proach were discussed. First, local and mesoscale weather could fall through the cracks in 
anomaly maps and anomaly forecasts due to the limitation in spatial and temporal resolution 
of available data, especially climatology. Second, a full meteorological interpretation and 
understanding of anomalous systems needs the use of full-field weather systems. Without 
understanding the full field weather system, an anomaly alone could sometimes be mislead-
ing. Third, anomalization of a complex dynamic model with full physics is extremely difficult 
if it is not impossible. Application of the anomaly approach to simple dynamical and statisti-
cal models is more feasible. Due to the reduction of model complexity and nonlinearity, an 
anomaly model might not be suitable for ensemble prediction purposes. More work needs to 
be done to advance this relatively new area of anomaly-based weather analysis and forecast-
ing, which is the purpose of this review.
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